
A Truthful FPTAS Mechanism for Emergency
Demand Response in Colocation Data Centers

Jianhai Chen∗, Deshi Ye∗, Shouling Ji∗†, Qinming He∗, Yang Xiang‡, Zhenguang Liu§
∗ Institute of Cyberspace Research and College of Computer Science and Technology, Zhejiang University, Hangzhou 310027.

{chenjh919, yedeshi, hqm, sji}@zju.edu.cn
† Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou 310027, China.

‡Swinburne Research, Swinburne University of Technology, Victoria 3122 Australia.

yxiang@swin.edu.au
§Dept. of Computer Science, National University of Singapore, Computing 1, 13 Computing Drive Singapore 117417.

liuzhenguang2008@gmail.com

Abstract—Demand response (DR) is a vital means of electricity
market in maintaining power grid reliability, sustainability and
stability. DR can enable consumers (e.g. data centers) to reduce
their electricity consumption when the supply of electricity is
a shortage. The consumers will be rewarded if they reduce or
shift some of their energy usage during peak hours. Aiming
at solving the efficiency of DR, in this paper, we present
MEDR, a mechanism on emergency DR in colocation data center.
First, we formalize the MEDR problem and propose a dynamic
programming to solve the optimization version of the problem.
We then design a deterministic mechanism to solve the MEDR.
We prove that our mechanism is truthful and it is an FPTAS,
i.e., it can be approximated within 1 + ε for any given ε > 0,
while the running time of our mechanism is polynomial in the
number of tenants n and 1/ε. Furthermore, we also give an
auction system covering the efficient FPTAS algorithm as bidding
decision program for DR. Finally, we choose a real dataset to
build a large number of simulation datasets in performance
evaluation. The results show that our mechanism outperforms
near-optimal and high utility demonstrate the effectiveness of
our work.

Index Terms—Emergency Demand Response; Knapsack Prob-
lem; Mechanism Design; Colocation Data Center; Auction

I. INTRODUCTION

Demand response (DR) programs are widely adopted in

many colocation data centers for improving the efficiency of

power grids [1], [2]. It attempts to adjust the demand for

power instead of adjusting the supply. In today’s power grid,

DR is a technique for regulating the energy consumption over

time, which is one of the major reliability impacts for smart

grids [3]. On the consumer side, DR is commonly utilized as

a powerful tool for employing flexibility of using electricity

in response to supply-demand conditions [4]. In smart grid

market when electricity price rises or the system reliability

are threatened, the electricity supplier will firstly deliver the

notice of direct compensation, of inductively reducing power

load or signal of power price rise to electricity consumers.

The consumers will change their intrinsic power using mode

so as to meet the demand of electricity supply, reducing or

passing a special period of time of power load, ensuring the

stability of the power grid and restraining the rise of electricity

price. In addition, DR is an important tool of demand-side

management [5] which refers to the way that countries use

policy measures to guide power users to reduce electricity at

peak time, use electricity in low valley, improve power supply

efficiency and optimize the usage of electricity. When it comes

to the emergency demand of using electricity, the demand-side

management will be required to start an immediate response or

incentive mechanism of the user report electricity, and declare

the amount of electricity and the price of electricity.

However, there are few efficient mechanisms and systems

to support efficient power management in current power grid

and many colocation data centers, leading to high power cost

and low efficiency [5]. For example, to reduce peak demand

in a power grid, the DR is usually implemented manually

by sending signals to large consumers, such as data centers.

Besides, it is worthy to note that colocation of data centers is

quite popular now. According to the website1, there are 3, 775
colocation data centers from 112 countries. A colocation is the

third-party leased placement that provides physical homes for

many data centers, and provides lots of services such as fast

Internet, stable power supply and cooling. Though colocation

of data centers provided a nice solution for those enterprise

tenants, it consumed huge electricity. As pointed out in [6], 91
billion kilowatt-hours of electricity was consumed in U.S. in

2013, and it emitted around 97 million metric tons of carbon

pollution in that year. On the other hand, it is possible to close

or migrate some tasks in a large data center such that some

computing servers can be shutdown. This makes possible for

data centers to be participant in DR. In case of emergency (for

example, earthquake or extreme bad weather) or reaching the

capacity of a grid, it requires to implement the DR.

Therefore, to improve the efficiency, an incentive reverse

auction mechanism is employed to motivate power users to

participate in DR activities. The basic process of the auction is

as follows. The electricity DR and electricity quota are issued

by the special power management department. After the power

users receive the signal, the electricity price can be reported in

1Data collected from http://www.datacentermap.com/ in Jan 7, 2016.
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the form of bidding. Then the bidding system runs a bidding

mechanism to choose the group of users, in which users will

perform the restricted electricity consumption behavior in the

DR and achieve corresponding compensations.

In this work, we aim to design an efficient mechanism

to solve the DR problem called MEDR. Actually, there are

several challenges in solving MEDR. It is worth to note

that we could apply the VCG mechanism [7]–[9] to MEDR

problem, and a deterministic truthful mechanism was obtained.

However, the optimization problem of MEDR is NP-hard,

since it generalizes the min-knapsack problem. On the other

hand, approximation algorithms for MEDR might not be

truthful. To the best of our knowledge, Zhang et al. [4] was

the first one to study approximated truthful mechanisms for

MEDR problem. They provided a 2-approximated mechanism

with truthful in expectation. The main technique of their work

is to present a 2-approximated algorithm, and then turn the

approximation algorithm into a mechanism with truthful in

expectation, while keeping the approximation ratio of 2. The

framework of their work is based on a convex decomposition

technique [10], which will transfer an approximation algorithm

into a truthful randomized mechanism.

Our main contribution is to propose a deterministic truthful

mechanism with FPTAS approximated. To the best of our

knowledge, we are not aware of other deterministic approxi-

mated truthful mechanisms. The main technique of our work

is to design a monotone algorithm based on the framework of

Archer and Tardös [11], which is the key idea of designing

deterministic truthful mechanism for one parameter. In detail,

we first design a dynamic programming for the optimization

version of our studied problem, and then applying some

rounding technique such that our design dynamic program-

ming satisfies the monotone property. Furthermore, in our

mechanism, both the cost ci and the size ei of each agent i are

private information. We also implement all the algorithms in a

reverse auction system and a simulation tool for performance

evaluation. The system tool can be used for colocation data

centers or can be extended to be adopted to some other appli-

cations such as auctions in smart grid. Extensive experiments

are presented to evaluate the effectiveness of our method.

Empirical results show that our mechanism achieves nearly

optimal solution.

The rest of this paper is organized as follows. In Section II,

we state the mechanism design problem called MEDR. In

Section III, we propose a dynamic programming to solve the

optimization version of the studied problem. Then we address

an FPTAS deterministic truthful mechanism. In Section V, we

implement a reverse auction system tool and all the algorithms.

Extensive simulation experiments are taken to evaluate the

effectiveness of our method. The related works are presented in

Section VI, and concluding remarks are given in Section VII.

II. PROBLEM STATEMENT

In this section we address the statement of a mechanism

design problem on DR for colocation data center.

We study a mechanism design problem MEDR that arises

in data center demand response. There are n tenants in a colo-

cation data center. Each tenant i ∈ {1, 2, . . . , n} subscribes a

certain amount of power supply from the colocation operator.

In the event of Emergency Demand Response (EDR), the

colocation operator is required to reduce W amount of energy.

Given power-based contracts, tenants may not have incentive

to participate in EDR unless they are awarded. Even if some

tenants are interested in EDR, their reduction may not reach

the reduction target W . In case of not reaching the target, the

colocation operator can use backup energy storage (BES) to

fulfill the shortage of EDR target. Let y be the amount of

grid-power demand reduction due to the usage of BES, and α
be the cost of BES usage per kWh.

Each tenant i submits a bid with two parameters (si, bi),
where si is the amount of planned energy reduction and bi is

the claimed cost due to such a reduction. However, each tenant

i has its own true type (ei, ci), where ci is the cost due to a

reduction of ei energy. The value ei and ci are only known

to the tenant i. Moreover, each tenant is single-minded [12]

such that each tenant is restricted to one single bid. Every

tenant has freedom to choose participation in this EDR or

not. If a tenant is not willing to participate in this EDR, we

can suppose its bid is (0, 0). Let B = {(s1, b1), . . . , (sn, bn)}
be the set of bids by the n tenants. Based on this bidding B,

the colocation operator will pay money Pi(B) to each tenant

i to encourage their participate in this EDR. Let Ui(B) =
Pi(B)− ci be the utility of tenant i according to the biddings

of B. Clearly each tenant i attempts to maximize his/her utility.

According to [4], the power consumption in colocation data

center consists of both the energy consumption of tenants and

also consumption of management such as cooling. There is a

ratio called Power Usage Effectiveness (PUE) γ between the

total energy consumption to the energy consumed by tenants,

which typically ranges from 1.1 to 2.0.

A tenant is a winner if her/his bidding is successful. Let

N be the set of winners. To meet the energy reduction target

W , we require that y + γ
∑

i∈N si ≥ W . The social cost of

the colocation operator is αy +
∑

i∈N Pi(B). The social cost

of tenants is
∑

i∈N (ci − Pi(B)). Thus, the total social cost

is equivalent to aggregate tenant cost due to energy reduction

plus the operator’s cost for using BES, i.e., αy +
∑

i∈N ci.
The goal of the mechanism design is to minimize the total

social cost, meanwhile no tenant can benefit by proposing a

false bidding. The optimization version of this problem can be

formulated as an integer programming. Let xi = 1 if tenant i
is a winner, i.e. i ∈ N , otherwise xi = 0.

min αy +
∑n

i=1 xici (1)

subject to

y + γ
∑n

i=1 xisi ≥ W (2)

xi = {1, 0}, ∀i ∈ {1, 2, . . . , n} (3)

The studied MEDR problem is closely related to knapsack

auction problems. According to objective functions, we define
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two types of mechanism design for knapsack problems. In

max-knapsack problem, each agent has a private valuation for

having his/her objective in the knapsack. The problem is to

find an allocation of the agents without exceeding the capacity

of the knapsack as so to maximize the sum of each agent’s

value.In min-knapsack problem, each agent has a private cost

for having his/her item in the knapsack. The problem is to find

an allocation to cover the knapsack, while the sum of agents’

cost is minimized.

For any instance I , we define by C(M(I)) the social cost
of the mechanism M, which is the total costs of tenants plus

the operator’s cost for using BES. A mechanism M is said

to be ρ-approximated if C(M(I)) ≤ ρ · C(OPT (I)), where

OPT is an optimal algorithm.

Let B−i = {B1, . . . , Bi−1, Bi+1, . . . , Bn} be the bids

except tenant i’s bid.

Definition 1: (Truthfulness): A mechanism M consisting of

an allocation function A and a payment function P is truthful

(or strategy-proof) if for every tenant i with the true cost

ci cannot increase his/her utility by declaring any other cost

(si, bi) regardless of every bidding of other agents B−i, i.e.,

it satisfies

Ui((ei, ci), B−i) ≥ Ui((si, bi), B−i).

This definition implies that truthful reporting is a dominant

strategy for every tenant.

Definition 2: (Individual rationality): A mechanism M is

said to be individual rationality if every agent always ob-

tains non-negative utility with bidding of the true cost, i.e.,

Ui((ei, ci), B−i) ≥ 0 for any i and any B−i.

III. APPROXIMATED TRUTHFUL MECHANISM

In this section, we will address an approximated truthful

mechanism. We present a dynamic programming to solve the

optimization version of our problem MEDR optimally, and

then we explore a deterministic truthful mechanism while it

is arbitrarily approximated for any given ε > 0.

A. Dynamic Programming Model

Our dynamic programming requires to solve the min-

knapsack problem as a subroutine. The min-knapsack problem

consists in finding a subset of items, where each item i has

a cost ci and a size si, with the minimum cost such that

the sum of their sizes is at least as large as a specified

capacity. Based on the idea of the max-knapsack problem [13],

Tauhidul [14] gave a dynamic programming for the min-

knapsack problem. We adopt this dynamic programming in

(4) [14] as a subroutine in the following.

Let S(i, c) denote a subset of {1, . . . , i} whose cost is

exactly c and whose total size is maximized. Let A(i, c) be the

size of S(i, c) (A(i, c) = 0 if no such set exists). The recursive

formula of the dynamic programming is given in (4). In this

formula A(i, c) gives a tabular of an optimal value for each

subproblem (i, c).

A(i, c) =

⎧⎨
⎩

max{A(i− 1, c), si +A(i− 1, c− ci)},
if ci ≤ c

A(i− 1, c), otherwise
(4)

In the following, we design the dynamic programming for

our MEDR problem based on the recursive function (4). The

Algorithm 1 (Algorithm DOPT (I)) gives the details of the

dynamic programming for our problem MEDR.

Algorithm 1: Algorithm DOPT (I): Dynamic Program-

ming for MEDR

Input: The set of tenants I , and demand capacity W .

1 Run the dynamic programming based on the formula (4)

for the input I , and obtain A(i, c) for each (i, c), where

1 ≤ i ≤ n and 0 ≤ c ≤ ∑
i ci;

2 for each (i, c) do
3 if γA(i, c) < W then
4 y(i, c) = α(W − γA(i, c)) + c
5 else
6 y(i, c) = c

Output: Return min(i,c) y(i, c)

Theorem 1: The dynamic programming DOPT (I) pro-

duces an optimal solution for any instance of tenants I with

demand request W , and unit cost of BES α. The running time

is pseudo-polynomial, which is O(n2cmax), where cmax is the

largest cost.

Proof. Any optimal solution consists of two parts, one is

covered by BES, and another is covered by items from I .

Let p, q be the cost due to tenants I and BES, respectively.

Let cmax = maxi ci be the largest cost among all tenants.

In the dynamic programming we iterate all possible (i, c),
where c ∈ C = {0, 1, 2, . . . , ncmax}. Any cost due to

tenants I is in C, hence p ∈ C. Note that the dynamic

programming A(i, p) provides the maximize size whose cost

is exactly p. If γA(n, p) is less than W , and we require at

least W −γA(n, p) BES to cover the knapsack in the optimal.

Therefore, p+ q ≥ α(W − γA(n, p)) + p. If γA(n, p) ≥ W ,

then q = 0. These two cases are both covered in the dynamic

programming, which implies that the dynamic programming

outputs an optimal solution.

The running time of dynamic programming is O(n2cmax),
since i ≤ n, and c ≤ ncmax, and the running time is bounded

by the iterative function of (i, c). �

B. Monotone FPTAS Model

Motivated by the truthful mechanism for max-knapsack

problem [15], we will propose a deterministic truthful mecha-

nism. To keep the truthful property, the idea of our mechanism

is to give a monotone algorithm. To obtain an FPTAS, we need

to design a monotone algorithm whose approximation ratio

is arbitrarily close to 1. The detailed algorithm is given in

Algorithm 3, which iteratively calls a subroutine Algorithm 2
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(Algorithm Ar(k, I)). The motivation of Algorithm 2 is to

keep the truthful, in which the rounding of each item is

independent on the bidding of all tenants.

Algorithm 2: Algorithm Ar(k, I)

Input: Given parameter k, and the instance

I = (s1, c1), . . . , (sn, cn).

1 Let ak = ε2k

n+1 ;

2 Let T (k) be the subset of items with cost at most of 2k;

We construct a new instance I ′ based on T (k), which is

identical to T (k), but the cost of each item c′ is given

as below.

3 for i ∈ T (k) do
4 c′i = � ci

ak
�

5 Run the dynamic programming DOPT (I ′)for the items

in T (k) with cost c′i, and obtain A(i, c′);
6 for each (i, c′) do
7 if γA(i, c′) < W then
8 y(i, c′) = �α(W−γA(i,c′))

ak
�+ c′

9 else
10 y(i, c′) = c′

Output: Return min(i,c′) y(i, c
′)

Algorithm 3: Monotone FPTAS AFPTAS

Input: Given ε > 0, and the instance I .

1 Let best ← ∞, and cmax = maxi ci.
2 for k ← 1 to log cmax do
3 S′(k) ← Ar(k, I); /* call Algorithm 2 (Algorithm

Ar(k, I)) */

4 if S′(k) < best then
5 best ← S′(k)
6 S̄ ← the subset items that contained in the

solution of S′(k)

Output: S̄, and use BES W − γ
∑

i∈S̄ si

Lemma 1: For any ε > 0, Algorithm AFPTAS has approx-

imation ratio of 1 + ε, and its running time is polynomial in

1/ε, n, log cmax.

Proof. Let cq be the largest cost among the items in an optimal

algorithm to cover the knapsack. Define k∗, such that

2k
∗−1 < cq ≤ 2k

∗
.

Denote O∗ to be the subset of items in the optimal solution.

Let y∗ be the size BES used in the optimal solution. Let

O∗(R) = O∗ ⋃{R}, where R is a virtual item with size y∗

and cost αy∗. Let OPT be the cost of the optimal solution.

We have OPT ≥ cq .

Note that in T (k∗) as denoted in the algorithm Ar(k, I), we

have O∗ ⊆ T (k∗). Let S̄ be the subset of items returned by

the algorithm Ar(k, I) with k∗ as the parameter, and let (̄i, c̄)
be the pair of values that reaches the minimum of Ar(k, I).

Let O′ be the subset of items with costs rounded by 2k
∗

from O∗. Let R′ be a virtual item with size y∗/ak∗ .

Let ALG be the final cost incurred by the algorithm

AFPTAS , we can use the following inequalities to approximate

the cost by the algorithm with the optimal solution.

ALG =
∑
i∈S̄

ci +max(α(W − γA(̄i, c̄)), 0)

≤
∑
i∈S̄

ci +max(�α(W − γA(̄i, c̄))

a∗k
�, 0)ak∗ + ak∗

≤
∑
i∈S̄

(c′i · ak∗ + ak∗) +

max(�α(W − γA(̄i, c̄))

a∗k
�, 0) · ak∗ + ak∗

≤
∑
i∈S̄

c′i · ak∗ +max(�α(W − γA(̄i, c̄))

a∗k
�, 0) · ak∗

+(n+ 1)ak∗

≤
∑

i∈O′ ⋃{R′}
c′i · ak∗ + (n+ 1)ak∗

≤
∑

i∈O∗ ⋃{R}
ci + (n+ 1)ak∗

≤ OPT + ε2k
∗

≤ (1 + 2ε)OPT.

The running time is poly(1/ε, n, log cmax). In algorithm

Ar(k, I), the largest cost of T (k) is 2k, the running time of

dynamic programming is O(n3/ε). The total running time of

AFPTAS is O( 1εn
3 log cmax). �

1) Monotone: A declaration B′
i = (s′i, b

′
i) is said to be a

higher declaration than the bidding Bi = (si, bi) if s′i ≥ si
and b′i ≤ bi, i.e. Bi � B′

i. A bid (si, bi) is said to be a winner
declaration if this item is selected in the knapsack.

Definition 3: (Monotone) We say that an algorithm A is

monotone if, for any bidder (si, bi) is a winning declaration

then any higher declaration also wins.

Bitonic was introduced by Mu’Alem and Nisan [16] for

maximize problems, such as multi-unit auction, and it was

generalized by Briest, Krysta, and Vöcking [15].

In this work, we apply the technique of bitonic to the

minimize problems.

Definition 4: (Bitonic) Given a function f : An →, a

monotone algorithm A is bitonic with respect to the function

f if for any agent i, the following hold:

1) If i ∈ A(B), then f(A(Bi, B−i)) ≥ f(A(B′
i, B−i)) for

any Bi � B′
i.

2) If i 
∈ A(B), then f(A(Bi, B−i)) ≥ f(A(B′
i, B−i)) for

any B′
i � Bi.

Intuitively, a monotone algorithm A is bitonic with respect

to f if f is a monotone non-decreasing function of each

agent’s valuation while she is not selected for the solution,

but becomes monotone non-increasing after she is selected

for the solution. In this work, the function f is the objective
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function, i.e., the social welfare. The bitonic is indeed required

to guarantee the monotone for compositions of algorithms.

Algorithm 4: MIN(A1, A2) Operator

Input: Bidding B
1 Run the algorithm A1 and A2;

2 Let swA1(B) and swA2(B) be the social welfare of

Algorithm A1 and A2, respectively.

3 if swA1
(B) ≤ swA2

(B) then
4 return A1(B);
5 else
6 return A2(B).

Lemma 2: Let A1 and A2 be two monotone bitonic allo-

cation algorithms. Then, M = MIN(A1, A2) is a monotone

bitonic allocation algorithm.

Proof. This can be easily extended from the proof of the

Theorem 2 in [16], which was designed for the MAX operator.

�

Lemma 3: Algorithm Ar(k, I) is monotone and bitonic with

respect to the objective function.

Proof. Algorithm Ar(k, I) returns an optimal solution, if an

agent reports a higher bidder, then the optimal algorithm will

accept this item too. Suppose an agent i was not selected,

and any lower declaration B′
i, if this item was accepted then

the objective function shall be smaller, otherwise the objective

remains, and hence the objective function is non-increasing for

any lower bidders. Thus the property of bitonic follows. �

Lemma 4: Algorithm AFPTAS is monotone and bitonic with

respect to the objective function.

Proof. The lemma follows immediately according to Lemma 2

and Lemma 3. �

2) Payment:
Definition 5: (Critical payment) Let algorithm A be a

monotone algorithm, if we fix the declaration B−i, and then

for any agent i and fixed bidding si, there exists a unique

cost θAi , called critical payment, such that ∀bi ≤ θAi , bi is a

winning declaration, and ∀bi > θAi is a losing declaration.

To calculate the critical value for any agent j, we fix the

other agents’ bids, and then use a binary search on interval

[bj ,maxj bj ] and repeatedly run the allocation algorithm A to

check whether the agent j is selected.

Definition 6: The payment pA associated with the monotone

allocation algorithm A that is based on the critical value

is defined by pAj = θAj if agent j wins with allocation

Alloci(B) = si, and pAj = 0 otherwise.

A mechanism MA = (A, pA) is normalized , if its payment

pA is defined as in Definition 6, i.e. agents that are not selected

pay 0. We say that algorithm A is exact if Alloci(B) = si or

Alloci(B) = ∅ for each declaration (si, bi).
In this work, we only consider a limited type of agent called

single-minded, the cost function ∞ if Alloci(B) > si and ci

otherwise. That will force each agent does not over bidding

his/her size if allocation algorithm is an exact algorithm.

Theorem 2: [15] Let A be a monotone and exact algorithm

for some minimization problems and single-minded agents.

Then mechanism MA = (A, pA) is truthful.

Proof. In [15], they gave the detailed proof for utilitarian

problems, and thus it holds for MAX-knapsack problem.

Moreover, in their paper, it was shown that the proof is

valid for minimization problems, such as the reverse single-

minded multi-unit auction problem, which is equivalent to the

minimum knapsack problem. �

Algorithm 5: Algorithm PA(B)

Input: The bidding B of all tenants, and the allocation

algorithm A
1 for i ← 1 to n do
2 Let zi = 1 if the ith item is selected in the knapsack

by the allocation problem A(B), and 0 otherwise.

3 Let h = αγsi and l = bi.
4 while h− l ≥ 1 do
5 b′i = (h+ l)/2;

6 zi = A(B−i, (si, b
′
i));

7 if zi == 1 then
8 l = b′i
9 else

10 h = b′i

11 Pi(B) ← l.

Output: The payment Pi(B) for each agent i.

Theorem 3: The mechanism MAFPTAS
=

(AFPTAS , p
AFPTAS ) is truthful and it is an FPTAS

mechanism, i.e. its approximation ratio is 1 + ε for any

given ε > 0, and the total running time of the mechanism is

polynomial in 1/ε, n, log cmax.

Proof. Algorithm PA(B) (Algorithm 5) is a critical payment,

Algorithm AFPTAS is an exact algorithm, and bitonic with

respect to the objective function according to Lemma 4. Thus

the mechanism MAFPTAS
is truthful followed by Theorem 2.

The FPTAS is achieved in Lemma 1.

�

IV. IMPLEMENTATION

In this section, we provide a reverse auction system (RAS)

to solve the MEDR problem and implement all the algorithms

for DR on colocation data centers.

A. Reverse Auction System

The architecture of the RAS is shown in Fig. 1. The whole

system framework consists of two parts, namely, client and

server. The client refers to users including the bidding tenants

and the colocation data center operator. The server is a MEDR

auction system, which is implemented and run as a service.

This service program involves three primary function modules,
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that is, auction controller (AC), bidding decision (BD) and

power controller (PC), respectively.
The AC module is responsible for interaction with client

users, including receiving the client tenants’ bidding applica-

tion, invoking bidding decision (BD) to make a bidding deci-

sion, and returning back the bidding decision results to client

users. The BD module implements all the MEDR algorithms

presented in Section III, including the dynamic programming

algorithm ADOPT , the monotone FPTAS algorithm AFPTAS

and the payment algorithm APayment. All the algorithms are

developed by C/C++ language, and are integrated together as

an independent service program. The PC module takes charge

of executing power supply policies for balancing power using

according to the bidding results. In particular, the RAS runs

in a colocation data center for all tenants and the colocation

operator.

ServerServer

enant 1Tenant 1 enant 2Tenant 2 enant NTenant N...

Colocation datacenterColocation datacenter

�� �����	 ��
����
���

�� ��	��	

������� �����	�

Auction 
controller

Colocation
Operator

Colocation 
Operator

ClientClient

Bidding Decision
FPTAS/DOPT

Power 
controller

�� ���
 ������ ��
����� ������

�� ��	��� ������� ��
�

�	���	�
 ������	�

 � ���
 !"� ������� ��

#����$ !"� ���	���

MEDR Auction System 

3.Invoke decision
(bids,W, , , ) 

Fig. 1. Architecture of MEDR auction system

B. Reverse Auction Process
As shown in Fig. 1, the basis process of reverse auction

is as follows. At first, upon arrival of DR or EDR signals in

client, the colocation operator (Auctioneer) will firstly launch

an auction in RAS and send the EDR signal to tenants. The

tenants who are willing to participate then submit their own

bids with the size of power and costs to the RAS server.
Then, the AC receives the bids from client tenant users,

and then ask for BD to process the bidding decision when the

system needs to make decision of bidding. In bidding decision,

BD invokes FPTAS to make a decision. Before invoking, BD

needs to input the bidding data and the value of decision

algorithm required parameters, such as EDR W , α, γ, and

ε, etc. BD will input all data from the AC and calls a decision

algorithm to get bidding decision results. After running the

decision algorithms, it outputs the bidding decision results to

the AC.

Further, the AC returns back the bidding decision results to

the client. The results include the winning bids, and payments.

In the end, not only the winning tenants will achieve compen-

sation rewards from the colocation data center operator, but

also the new policy of power supply will be submitted to the

PC and be executed for the DR.

V. PERFORMANCE EVALUATION

In this section, we firstly generate simulation datasets.

We then do holistic simulation experiments to evaluate the

efficiency of FPTAS mechanism which further validates the

effectiveness of our RAS system performance.

A. Simulation Datasets

We consider a colocation data center, with N(N = 9) par-

ticipating tenants (denoted as Tenant #1, Tenant #2, ...,Tenant

#9). Each tenant i has mi(= 100, 000) homogeneous servers.

The power of each server includes 150W computing power

and d0 = 100W idle power. That is to say, if a server is

turned off, then we can obtain 100W power. If a server is

running a workload, it needs 150 + 100 = 250W power.

For simplicity, we produce simulation datasets according to

the datasets used in [4], including total EDR energy reduc-

tion by PJM on January 7, 2014 and normalized workload

traces which are collected from [17] (“Hotmail” and “MSR”)

and [18] (“Wikipedia”), as shown in Fig. 2(a) and Fig. 2(b).

The EDR energy reduction data consists of eleven event

numbers. Each number represents an energy reduction of

demand response arise in one hour period of time. The eleven

time periods are made up of a range in hour from 5 to 11 and

from 16 to 19. Moreover, we get the specific data from the

two figures and list in Table I in detail. Like Zhang [4], we

further generate EDR energy reduction targets as 15% of the

total EDR, which lists in the W column of Table I.

The tenants’ bids data are generated randomly with consid-

eration of the workload traces and some data center factors,

such as the general cost of a server or whole data center and

the energy price in market. We duplicate each workload for all

tenants with randomness up to 20%. For the total 9 tenants, we

firstly generate 9 random numbers ri, where i = 1, 2, . . . , 9,

between 0.01 and 0.20. In our simulation, the random numbers

are 0.11, 0.06, 0.02, 0.13, 0.05, 0.01, 0.15, 0.16, 0.02. Then we

duplicate the workload for three tenants by Hotmail, three

by MSR and three by Wikipedia, respectively. We assume

that each size of the workload denotes a ratio of the total

number of servers which is in running status. If we turn off

some servers then we can slash energy consumption. The total

energy reduction by tenant i is si = ni.d0,i.T , where T = 1
hour in simulation.

We conclude the size of tenants’ bid by a formula:

si = workloads ∗ M ∗ ri ∗ d0/1, 000, 000(MW ), where

M = 100, 000 and d0 = 100. The final range of size s is

between 10 ∼ 80. The workloads use data shown in Table I.

Besides, according to Zhang [4], tenants can reasonably save

6.7 ∼ 13.3 cents/kWh (depending on electricity price) power

when they house servers in their data centers. Equivalently,
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(a) Total EDR energy reduction by
PJMon January 7, 2014.
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(b) Normalized workloads in distinct
time.

Fig. 2. The source dataset for bidding decision simulation.

tenants can save 67 ∼ 133 $/MWh. Hence we produce several

random numbers rb between 67$ and 133$ for each tenant as

a bid power price which tenants are willing to take part in the

auction activity. The ith tenant bid is concluded by formula

bi = si ∗ rbi. All produced simulation data are in Table II.

Each tenant bid Bi has two numbers si, bi, which denote a

size of energy reduction and cost for supplying its responding

size of power, respectively.

TABLE I
EDR TARGET & WORKLOAD

Time(h) EDR W(15%EDR) Hotmail MSR Wikipedia
5 450 68 0.21 0.52 0.29
6 800 120 0.30 0.52 0.20
7 1,350 203 0.33 0.52 0.20
8 1,750 263 0.42 0.51 0.25
9 2,100 315 0.44 0.49 0.21
10 2,080 312 0.45 0.45 0.22
11 1,850 278 0.46 0.41 0.22
16 1,250 188 0.50 0.30 0.50
17 1,800 270 0.48 0.28 0.40
18 2,350 353 0.52 0.29 0.40
19 2,250 338 0.43 0.30 0.50

The PUE of colocation γ is set to 1.6 (typical for colo-

cation), and the default cost for using BES, α is considered

150$/MWh which we will vary later depending on the BES

energy source.

B. Experiment and Result Analysis

To evaluate the performance of the MEDR method, we

consider the approximation ratio of the FPTAS mechanism,

tenants’ utility and social cost reductions. For simplification,

we prepare all the simulation data and related parameter data

of algorithms together into a file which is used as input for the

bidding decision program. During the test running process, our

bidding decision program will read the data in a batch, process

all the algorithms execution, and then output all results to a

file for analysis.

1) Approximation Ratios: Our FPTAS mechanism can

achieve 1 + ε approximation ratio. Though FPTAS ensures

the running time is polynomial in n, and 1/ε. To evaluate

the efficiency of the FPTAS mechanism in practice, we use

approximation ratio metric which is concluded by the ratio

between the FPTAS-approximation algorithm and the DOPT

optimal, i.e. AR = y(FPTAS)/y(DOPT ). In the simula-

tion, we vary the parameters α, γ, and ε to run the FPTAS and

DOPT algorithm to obtain the results respectively. In each test,

we fix two parameters and change one parameter regularly.

Obviously we have three cases of ratio testing, which are

named as α-ratio test, γ-ratio test and ε-ratio test, respectively.

In α-ratio test, we set γ to 1.6 and set ε to 0.5 and vary the

parameter α with a range from 140 to 320 with an increasing

step 20. In γ-ratio test, ε is set to 0.5, α is set to 180$, and γ
is changed from 1.1 to 2 with an increasing step 0.1. In ε-ratio

test, α is set to 180$, γ is set to 1.6, and γ is changed from

1.1 to 2 with an increasing step 0.1.

We run the tests for all the 11 EDR reduction instances.

The results are shown in Fig. 3. We observe that all ratios are

between 1 and 1 + ε. Moreover, the ratios are closer to the

line with ratio 1. It means that the FPTAS solution is very

close to the optimal solution. Most of the line with ratios of

varying α seems to be more flat which means the α parameter

has little impact on the ratios. There are several broken lines

in Fig. 3(b) and Fig. 3(c). It demonstrates that the ratio exists

a special sensitivity to parameters γ and ε. The largest impact

factor is the parameter ε. With the increasing of ε, the ratio

increases as well as in theory.

2) Agents’ Utilities: We study each agent’s utility in all the

experiments. Note that agents’ utilities are concluded from the

payment for each tenant subtracts his/her actual cost. Actually,

we got that each tenant obtains a non-negative utility in our

experiment. We only show the result in Fig. 4(a) by letting

α = 180$, γ = 1.6, ε = 0.5. We illustrate each winner tenant’s

utility in each hour. Fig. 4(a) shows that the case of the 18th

hour time has the largest utility and the 5th hour time has the

minimum utility.

3) Social Cost Reduction Compared to BES only: Each

winner tenant has obtained a non-negative utility, which im-

plies that the colocation operator will pay a lot of money to

these tenants. To study whether this payment is too much, we

investigate the social costs when we only use BES. The results

are illustrated in Fig. 4(b) and Fig. 4(c) when the parameters

α and γ vary. The results reveal that the social costs given by

the FPTAS mechanism is much smaller than that one of BES

only. The percentages are declined when α or γ increases.

So it’s very important for the colocation data center to enable

more tenants to attend the energy demand response activities.

VI. RELATED WORKS

Besides the work in [4], there are several existing research

on mechanism design on DR. Ren and Islam [19] studied

the mechanism design for colocation demand response, but

their mechanism is not truthful and may not meet the target

of EDR. Chen et al. [20] studied the green colocation data

centers by designing a pricing mechanism to fulfill energy

reduction requirement for EDR. The energy reduction from

tenants is calculated by the price-taking and price-anticipating

equilibrium. Zhou et al. [21] studied demand resource on geo-

distributed cloud through VCG-based mechanism, in which the
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TABLE II
THE TENANT BID DATA

Hour Tenant#1 Tenant#2 Tenant#3 Tenant#4 Tenant#5 Tenant#6 Tenant#7 Tenant#8 Tenant#9
s1 b1 s2 b2 s3 b3 s4 b1 s5 b5 s6 b6 s7 b7 s8 b8 s9 b9

5 23 2,737 12 1,284 4 352 67 4,623 26 2,704 5 555 43 3,569 46 5,888 5 570
6 33 3,531 18 1,782 6 648 67 8,710 26 2,392 5 470 57 4,617 60 5,100 7 588
7 36 3,960 19 1,653 6 462 67 6,700 26 1,976 5 605 30 3,960 32 3,136 4 364
8 46 5,336 25 1,950 8 784 66 6,864 25 2,350 5 585 37 4,440 40 4,240 5 565
9 48 3,600 26 2,262 8 960 63 8,064 24 1,656 4 476 31 3,162 33 3,564 4 516

10 49 4,018 27 3,159 9 792 58 5,510 22 2,112 4 332 33 3,267 35 2,590 4 456
11 50 6,000 27 3,078 9 693 53 5,353 20 2,440 4 340 33 3,102 35 3,115 4 384
16 55 3,960 30 2,160 10 1,150 39 3,159 15 1,995 3 399 75 7,950 80 8,320 10 1,290
17 52 4,420 28 2,016 9 1,170 36 4,068 14 1,484 2 178 60 7,620 64 4,352 8 952
18 57 7,581 31 3,100 10 1,030 37 4,144 14 1,358 2 212 60 6,540 64 7,360 8 712
19 47 4,136 25 3,275 8 744 39 5,031 15 1,380 3 270 75 7,725 80 5,760 10 930

�
���
���
���
���
�

���
���
���

��� ��� ��� ��� ��� ��� ��� ��� 	�� 	��


�
�
�

�

�����������

������
����������
����������
�������
�
������
�
������
�
���� �
�
������
�
����!�
�
������
�
������
�
������
�
���� �
�
������
�
����!�
�"#�

(a) α-ratio test: the ratio between FPTAS and DOPT
for eleven EDR instances on varying α, where γ =
1.6, ε = 0.5
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(b) γ-ratio test: the ratio between FPTAS and DOPT
for eleven EDR instances on varying γ, where α =
180$, ε = 0.5
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(c) ε-ratio test: the ratio between FPTAS and DOPT
for eleven EDR instances on varying ε, where α =
180$, γ = 1.6

Fig. 3. The performance evaluation on approximation ratios in distinct time of EDR instances.

utility of each agent depends highly on its interactive work-

load. Sun et al. [22] considered fairness among the mechanism

design and provided online mechanism with competitive ratio

of 3.2 in expectation. Ahmed et al. [23] proposed a contract-

based mechanism, in which the colocation operator offers a

set of contracts (i.e., a pair of energy reduction and rewards)

to tenants and tenants can voluntarily select none or one of

the contracts to accept, while the objective is to minimize

the operator’s cost, the sum of rewards plus the cost of

BES. Islam et al. [24] reduced the operator’s cost by learning

tenants’ response to reward. Tran et al. [25] used a two-stage

Stackelberg game to model the economic demand response

where the operator can adjust an elastic energy reduction

target.

A closely related work is DR in smart grids. Zhou et

al. [6] studied the mechanism design on DR in smart grids.

Let α = 1, and there is an upper bound on the BES, i.e.

y ≤ zmax. A randomized FPTAS mechanism was given in [6].

Their idea is to combine with smooth analysis and randomize

auction. Actually, Dough and Roughgarden [26] showed that

if there exists an FPTAS approximation, then this algorithm

can be transformed into a truthful in expectation mechanism

that retains the FPTAS property. The work in [26] does not

require the existence of FPTAS. However, it still remains open

whether there exists a deterministic FPTAS.

A vast amount of work has been done for mechanism design

on multi-unit auction problem [27], [28], in which there is a

set of identical items among bidders, and every bidder has a

private valucation function on the number of items, and the

problem is to find an allocation of the items to the bidders so

as to maximize the sum of bidders’ valuations.

Briest et al. [15] presented a truthful FPTAS for the max-

knapsack problem. Our problem differs from the min-knapsack

in which we have BES such that the capacity of the knapsack

we need to cover is soft.

VII. CONCLUSIONS

In this paper, we have proposed a deterministic truthful

FPTAS mechanism with 1+ε approximation ratio for a reverse

auction of EDR in colocation data centers. We have developed

an auction system and implemented a bidding decision tool for

simulation experiments. The experimental results demonstrate

the effectiveness of our methods. In future work, we study the

more practical utility of our mechanism and the performance

optimization with parallelization techniques for the dynamical

programming. Besides, the provided technique allows us to

deal with single minded agents, and both the size of energy

and the cost are private information. Many open problems arise

in the area of demand response. For example, agents are multi-

minded.
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(a) Comparison of tenants’ non-negative utilities
when α = 180, γ = 1.6, ε = 0.5.
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(b) Comparison of social cost ratio between FPTAS
and BES, where γ = 1.6, ε = 0.5 and α varying
from 140 to 320 with a growing step 20.
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(c) Comparison of social cost ratio between FPTAS
and BES, where α = 180, ε = 0.5 and γ varying
from 1.1 to 2.0 with a growing step 0.1.

Fig. 4. The performance evaluation on tenants’ utility and social costs.
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